(New page: A system is called linear if for any inputs, x1 & x2, yielding outputs y1 & y2 the response to a*x1 + b*x2 is a*y1 + b*y2. i.e The system below x1 => system => *a \ ...)
 
Line 11: Line 11:
  
  
x1 => system => *a \
+
x1 => system => *a \\
                    +  => y(t)
+
                    +  => y(t)
x2 => system => *b /
+
x2 => system => *b //
  
  
Line 19: Line 19:
  
  
x1*a => system \
+
x1*a => system \\
                +  => y(t)
+
                +  => y(t)
x2*b => system /
+
x2*b => system //

Revision as of 14:57, 11 September 2008

A system is called linear if for any inputs, x1 & x2, yielding outputs y1 & y2 the response to

a*x1 + b*x2 is a*y1 + b*y2.



i.e

The system below


x1 => system => *a \\

                    +  => y(t)

x2 => system => *b //


equals th system below


x1*a => system \\

                +  => y(t)

x2*b => system //

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood