Line 19: Line 19:
  
 
Lets take the system <math>y(t)=8x(t)</math> , so lets get 2 y's and 2 x's out of that:
 
Lets take the system <math>y(t)=8x(t)</math> , so lets get 2 y's and 2 x's out of that:
 +
 
<math>y_1(t)=8x_1(t)</math> for <math>x_1(t)=t</math>
 
<math>y_1(t)=8x_1(t)</math> for <math>x_1(t)=t</math>
  
Line 25: Line 26:
 
Now testing the theory:
 
Now testing the theory:
  
<math>ax_1+bx_2=a+2b</math> and
+
<math>ax_1(t)+bx_2(t)=at+b2t</math> and
  
<math>ay_1+by_2=a8+b16</math> , which can be reduced to  
+
<math>ay_1(t)+by_2(t)=a8t+b16t</math> , which can be reduced to  
  
  

Revision as of 13:55, 11 September 2008

Linearity

Background

Language Definition

A system is considered linear if 2 separate inputs, multiplied by 2 different constants, can produce 2 separate outputs multiplied by those same constants.

Mathematical Definition

A system is called linear if: For any inputs $ x_1(t) $ and $ x_2(t) $ yielding outputs of $ y_1(t) $ and $ y_2(t) $,

$ ax_1(t)+bx_2(t)=ay_1(t)+by_2(t)\,\! $

Example of Linear system

The easiest way to determine linearity is using standard definition:

Lets take the system $ y(t)=8x(t) $ , so lets get 2 y's and 2 x's out of that:

$ y_1(t)=8x_1(t) $ for $ x_1(t)=t $

$ y_2(t)=16x_2(t) $ for $ x_2(t)=2t $

Now testing the theory:

$ ax_1(t)+bx_2(t)=at+b2t $ and

$ ay_1(t)+by_2(t)=a8t+b16t $ , which can be reduced to



Example of Non-Linear system

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman