(New page: == Linearity == == Background == === Language Definition === A system is considered linear if 2 separate inputs, multiplied by 2 different constants, can produce 2 separate outputs mult...)
 
Line 10: Line 10:
  
 
A system is called linear if:
 
A system is called linear if:
For any inputs <math>x_1(t)</math> and <math>x_2(t)</math> yielding outputs of <math>y_1(t)</math> and <math>y_2(t)</math>, the response to:
+
For any inputs <math>x_1(t)</math> and <math>x_2(t)</math> yielding outputs of <math>y_1(t)</math> and <math>y_2(t)</math>,  
<math>ax_1(t)+bx_2(t)=ay_1(t)+by_2(t)</math>
+
  
 +
<math>ax_1(t)+bx_2(t)=ay_1(t)+by_2(t)\,\!</math>
  
 
== Example of Linear system ==
 
== Example of Linear system ==
 +
 +
The easiest way to determine linearity is using standard definition:
 +
 +
Lets take the system <math>y(t)=8x(t)</math> , so lets get 2 y's and 2 x's out of that:
 +
<math>y_1(t)=8x_1(t)</math> for <math>x_1(t)=t</math>
 +
 +
<math>y_2(t)=16x_2(t)</math> for <math>x_2(t)=2t</math>
 +
 +
Now testing the theory:
 +
 +
<math>ax_1+bx_2=a+2b</math> and
 +
 +
<math>ay_1+by_2=a8+b16</math> , which can be reduced to
 +
 +
 +
 +
  
 
== Example of Non-Linear system ==
 
== Example of Non-Linear system ==

Revision as of 13:53, 11 September 2008

Linearity

Background

Language Definition

A system is considered linear if 2 separate inputs, multiplied by 2 different constants, can produce 2 separate outputs multiplied by those same constants.

Mathematical Definition

A system is called linear if: For any inputs $ x_1(t) $ and $ x_2(t) $ yielding outputs of $ y_1(t) $ and $ y_2(t) $,

$ ax_1(t)+bx_2(t)=ay_1(t)+by_2(t)\,\! $

Example of Linear system

The easiest way to determine linearity is using standard definition:

Lets take the system $ y(t)=8x(t) $ , so lets get 2 y's and 2 x's out of that: $ y_1(t)=8x_1(t) $ for $ x_1(t)=t $

$ y_2(t)=16x_2(t) $ for $ x_2(t)=2t $

Now testing the theory:

$ ax_1+bx_2=a+2b $ and

$ ay_1+by_2=a8+b16 $ , which can be reduced to



Example of Non-Linear system

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett