(Time Invariance)
(Time Invariance)
Line 1: Line 1:
 
== Time Invariance ==
 
== Time Invariance ==
A system is time-invariant if the input <math>x(t)\!</math> and output <math>y(t)\!</math> then the response from an input <math>x(t-t_0)\!</math> will be <math>y(t-t_0)\!</math>.
+
A system is time-invariant if for any input <math>x(t)\!</math> and any <math>t_0\!</math> (where <math>t_0\!</math> is a real number) the response to the shifted input <math>x(t-t_0)\!</math> is <math>y(t-t_0)\!</math>.
 
+
[[Image:Timeinv_ECE301Fall2008mboutin.JPG]]
+
  
 
== Example of a Time Invariant System ==
 
== Example of a Time Invariant System ==

Revision as of 12:15, 11 September 2008

Time Invariance

A system is time-invariant if for any input $ x(t)\! $ and any $ t_0\! $ (where $ t_0\! $ is a real number) the response to the shifted input $ x(t-t_0)\! $ is $ y(t-t_0)\! $.

Example of a Time Invariant System

Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ y(t)=2x(t-t_0)+2\! $ the response is $ y(t)=2x(t)+2\! $.



Example of a System that is not Time Invariant

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009