Line 7: Line 7:
 
 
 
         P(A=1) = p P(B=1) = p
 
         P(A=1) = p P(B=1) = p
P(A=0) = 1-p P(B=0) = 1-p
+
 +
        P(A=0) = 1-p P(B=0) = 1-p
 
 
 
 
 
         P(A=1,C=1) = P(A=1) . P(C=1) = p.P(A=1,B=0) = p^2.(1-p) (1)
 
         P(A=1,C=1) = P(A=1) . P(C=1) = p.P(A=1,B=0) = p^2.(1-p) (1)
P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p) (2)
+
 +
        P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p) (2)
  
 
Since, (1) & (2) are not equal to each other, A & C are
 
Since, (1) & (2) are not equal to each other, A & C are
 
independent of each other when bits are biased.
 
independent of each other when bits are biased.

Revision as of 14:19, 16 September 2008



       A		B		


       P(A=1) = p	P(B=1) = p
       P(A=0) = 1-p	P(B=0) = 1-p			


       P(A=1,C=1) = P(A=1) . P(C=1) = p.P(A=1,B=0) = p^2.(1-p)		(1)
       P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p)				(2)

Since, (1) & (2) are not equal to each other, A & C are independent of each other when bits are biased.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood