(New page: == Part 1 == == Part 2 ==) |
(→Part 1) |
||
Line 1: | Line 1: | ||
== Part 1 == | == Part 1 == | ||
+ | The function was chosen at random from HW1: [[HW1.4 Hang Zhang - Periodic vs Non-period Functions_ECE301Fall2008mboutin]] | ||
+ | |||
+ | <math>\,x(t)=2cos(2\pi t)\,</math> | ||
+ | |||
+ | |||
+ | '''Periodic Signal in DT:''' | ||
+ | |||
+ | If sampled at <math>period=0.1</math>, the function | ||
+ | |||
+ | <math>\,y[n]=x[\frac{n}{10}]=2cos(\frac{2\pi n}{10})\,</math> | ||
+ | |||
+ | would be periodic, since | ||
+ | |||
+ | <math>\,y[n]=y[n+10N], \forall N\in Z\,</math> | ||
+ | |||
+ | TODO: Add MATLAB plot of the DT function | ||
== Part 2 == | == Part 2 == |
Revision as of 10:01, 11 September 2008
Part 1
The function was chosen at random from HW1: HW1.4 Hang Zhang - Periodic vs Non-period Functions_ECE301Fall2008mboutin
$ \,x(t)=2cos(2\pi t)\, $
Periodic Signal in DT:
If sampled at $ period=0.1 $, the function
$ \,y[n]=x[\frac{n}{10}]=2cos(\frac{2\pi n}{10})\, $
would be periodic, since
$ \,y[n]=y[n+10N], \forall N\in Z\, $
TODO: Add MATLAB plot of the DT function