Line 10: Line 10:
 
<math>x_1(t)\rightarrow y_1(t) = 4x_1(t)</math>
 
<math>x_1(t)\rightarrow y_1(t) = 4x_1(t)</math>
  
 +
<math>x_2(t)\rightarrow y_2(t) = 4x_2(t)</math>
  
 +
<math>x_3 = ax_1(t) + bx_2(t)</math>
  
 +
<math>y_3(t) = 4t_3(t)</math>
 +
 +
<math>=4(ax_1(t) + bx_2(t))</math>
 +
 +
<math>=4ax_1(t) + 4bx_2(t)</math>
 +
 +
<math>=ay_1(t) + by_2(t)</math>
 +
 +
so it is linear
  
 
== non linear system ==
 
== non linear system ==

Revision as of 09:36, 11 September 2008

Def of linear system

Linear system is a system that possesses the important property of superposition.(Text book P.53)


linear system

$ y(t) = 4x(t) $

$ x_1(t)\rightarrow y_1(t) = 4x_1(t) $

$ x_2(t)\rightarrow y_2(t) = 4x_2(t) $

$ x_3 = ax_1(t) + bx_2(t) $

$ y_3(t) = 4t_3(t) $

$ =4(ax_1(t) + bx_2(t)) $

$ =4ax_1(t) + 4bx_2(t) $

$ =ay_1(t) + by_2(t) $

so it is linear

non linear system

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva