(Question 1)
(Question 1)
Line 5: Line 5:
 
Recall that this signal is periodic if  <math>T = {\omega_0\over2\pi}\,</math>  is rational.  
 
Recall that this signal is periodic if  <math>T = {\omega_0\over2\pi}\,</math>  is rational.  
  
Say I choose the sampling frequency <math>Ts=.1</math>
+
Say I choose the sampling frequency <math>T_s=.1\,</math>
  
 
The output will be:
 
The output will be:
Line 11: Line 11:
 
[[Image:Smooth_sin_ECE301Fall2008mboutin.jpg]]
 
[[Image:Smooth_sin_ECE301Fall2008mboutin.jpg]]
  
But if I choose the sampling frequency to be <math>Ts=.7</math>
+
But if I choose the sampling frequency to be <math>T_s=.7\,</math>
  
  
 
[[Image:Messed_sin_ECE301Fall2008mboutin.jpg]]
 
[[Image:Messed_sin_ECE301Fall2008mboutin.jpg]]

Revision as of 08:21, 11 September 2008

Question 1

I chose the signal $ x[n]=e^{j\pi n} \, $ which Jeff Kubascik posted on his HW1.

Recall that this signal is periodic if $ T = {\omega_0\over2\pi}\, $ is rational.

Say I choose the sampling frequency $ T_s=.1\, $

The output will be:

Smooth sin ECE301Fall2008mboutin.jpg

But if I choose the sampling frequency to be $ T_s=.7\, $


Messed sin ECE301Fall2008mboutin.jpg

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett