(Time-Invariant System)
(Time-Invariant System)
Line 10: Line 10:
  
 
Consider the system: <math>y(t)=x(t-3) \,</math>
 
Consider the system: <math>y(t)=x(t-3) \,</math>
 +
 +
If <math>x(t) \,</math> is first time shifted, then put into the system:
 +
 +
<math>x(t) \longarrow x(t-t_0) \longarrow y(t)=(t-3-t_0)\,</math>

Revision as of 06:38, 11 September 2008

Time-Invariant System Definition

A time invariant system is a system that produces equivalent results for the following cases:

1. A time shifted input $ x(t+t_0) \, $ is entered into the system.

2. An input $ x(t) \, $ is entered into the system then time shifted by $ t_0 \, $.

Time-Invariant System

Consider the system: $ y(t)=x(t-3) \, $

If $ x(t) \, $ is first time shifted, then put into the system:

$ x(t) \longarrow x(t-t_0) \longarrow y(t)=(t-3-t_0)\, $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal