Line 3: Line 3:
  
 
Input: <math>X_k[n] = d[n-k] \,</math>
 
Input: <math>X_k[n] = d[n-k] \,</math>
 +
 +
Prob: Which variable represent time ?
 +
 +
===1st Assumption: n represents time===
 +
 +
<math> d[n-k] --> [system] --> (k+1)^2 d[n - (k+1)] --> [timedelay -1] --> (k+1)^2 d[(n-1) -( k+1)] ,\</math>
 +
 +
yields the same result as:
 +
 +
<math> d[n-k] --> [timedelay -1] --> d[(n-1) - k] --> [system] --> (k+1)^2 d[(n-1) - (k+1)] ,\</math>
 +
 +
 +
===2st Assumption: k represents time===
 +
 +
<math> d[n-k] --> [system] --> (k+1)^2 d[n - (k+1)] --> [timedelay -1] --> (k+1)^2 d[n-k] ,\</math>
 +
 +
yields not the same result as:
 +
 +
<math> d[n-k] --> [timedelay -1] --> d[n - (k-1)] --> [system] --> k^2 d[n-k] ,\</math>
 +
 +
 +
 +
Remember: Time delay only occurs on function, not variable on equations.
 +
 +
Concluded, it is time invariant if we say n represents time,
 +
      and it is time  variant if we say k represents time.

Revision as of 18:44, 10 September 2008

Time Invariance? or Time Variance?

System: $ Y_k[n] = (k+1)^2 d[n - (k+1)] \, $

Input: $ X_k[n] = d[n-k] \, $

Prob: Which variable represent time ?

1st Assumption: n represents time

$ d[n-k] --> [system] --> (k+1)^2 d[n - (k+1)] --> [timedelay -1] --> (k+1)^2 d[(n-1) -( k+1)] ,\ $

yields the same result as:

$ d[n-k] --> [timedelay -1] --> d[(n-1) - k] --> [system] --> (k+1)^2 d[(n-1) - (k+1)] ,\ $


2st Assumption: k represents time

$ d[n-k] --> [system] --> (k+1)^2 d[n - (k+1)] --> [timedelay -1] --> (k+1)^2 d[n-k] ,\ $

yields not the same result as:

$ d[n-k] --> [timedelay -1] --> d[n - (k-1)] --> [system] --> k^2 d[n-k] ,\ $


Remember: Time delay only occurs on function, not variable on equations.

Concluded, it is time invariant if we say n represents time,

      and it is time   variant if we say k represents time.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett