Line 6: | Line 6: | ||
== Example of a linear system == | == Example of a linear system == | ||
− | System is: <math> f(x) = 23x<math> | + | System is: <math> f(x) = 23x \,<math> |
− | <math>X_1(t) = t^2</math> | + | <math>X_1(t) = t^2 \,</math> |
− | <math>X_2(t) = 2t^2</math> | + | <math>X_2(t) = 2t^2 \,</math> |
− | <math>f(aX_1 + bX_2) = af(X_1) + bf(X_2)</math> | + | <math>f(aX_1 + bX_2) = af(X_1) + bf(X_2) \,</math> |
− | <math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2)</math> | + | <math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2) \,</math> |
− | <math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2</math> | + | <math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \,</math> |
− | <math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2)</math> | + | <math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \,</math> |
− | <math> f(x) = 23x<math> | + | <math> f(x) = 23x \,<math> |
== Example of a non-linear system == | == Example of a non-linear system == |
Revision as of 16:13, 10 September 2008
Linearity
A system is called linear if and only if:
$ f(ax_1 + bx_2) = af(x_1) + bf(x_2) $
Example of a linear system
System is: $ f(x) = 23x \,<math> <math>X_1(t) = t^2 \, $ $ X_2(t) = 2t^2 \, $
$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) \, $ $ f(at^2 + 2bt^2) = af(t^2) + bf(t^2) \, $ $ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $ $ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $ $ f(x) = 23x \,<math> == Example of a non-linear system == $