Line 6: Line 6:
  
 
== Example of a linear system ==
 
== Example of a linear system ==
System is: <math> f(x) = 23x<math>
+
System is: <math> f(x) = 23x \,<math>
<math>X_1(t) = t^2</math>
+
<math>X_1(t) = t^2 \,</math>
<math>X_2(t) = 2t^2</math>
+
<math>X_2(t) = 2t^2 \,</math>
  
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2)</math>
+
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2) \,</math>
<math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2)</math>
+
<math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2) \,</math>
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2</math>
+
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \,</math>
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2)</math>
+
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \,</math>
<math> f(x) = 23x<math>
+
<math> f(x) = 23x \,<math>
  
  
 
== Example of a non-linear system ==
 
== Example of a non-linear system ==

Revision as of 16:13, 10 September 2008

Linearity

A system is called linear if and only if:

$ f(ax_1 + bx_2) = af(x_1) + bf(x_2) $

Example of a linear system

System is: $ f(x) = 23x \,<math> <math>X_1(t) = t^2 \, $ $ X_2(t) = 2t^2 \, $

$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) \, $ $ f(at^2 + 2bt^2) = af(t^2) + bf(t^2) \, $ $ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $ $ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $ $ f(x) = 23x \,<math> == Example of a non-linear system == $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood