(New page: = Linearity = A system is called linear if and only if: <math>f(ax_1 + bx_2) = af(x_1) + bf(x_2)</math>)
 
Line 4: Line 4:
  
 
<math>f(ax_1 + bx_2) = af(x_1) + bf(x_2)</math>
 
<math>f(ax_1 + bx_2) = af(x_1) + bf(x_2)</math>
 +
 +
== Example of a linear system ==
 +
System is: <math> f(x) = 23x<math>
 +
<math>X_1(t) = t^2</math>
 +
<math>X_2(t) = 2t^2</math>
 +
 +
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2)</math>
 +
<math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2)</math>
 +
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2</math>
 +
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2)</math>
 +
<math> f(x) = 23x<math>
 +
 +
 +
== Example of a non-linear system ==

Revision as of 16:12, 10 September 2008

Linearity

A system is called linear if and only if:

$ f(ax_1 + bx_2) = af(x_1) + bf(x_2) $

Example of a linear system

System is: $ f(x) = 23x<math> <math>X_1(t) = t^2 $ $ X_2(t) = 2t^2 $

$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) $ $ f(at^2 + 2bt^2) = af(t^2) + bf(t^2) $ $ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 $ $ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) $ $ f(x) = 23x<math> == Example of a non-linear system == $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood