Line 1: Line 1:
The system is not time invariant
+
The system is time invariant
  
 
Let time delay = t
 
Let time delay = t
Line 18: Line 18:
  
 
equals to Yk[n]=<math>(k+1)^2</math> &delta;[n-(k+1)]->time delay
 
equals to Yk[n]=<math>(k+1)^2</math> &delta;[n-(k+1)]->time delay
 +
 +
equals to Y(k+t)[n]=<math>(k+t+1)^2</math> &delta;[n-(k+t+1)]
 +
 +
yields the same result

Revision as of 15:38, 10 September 2008

The system is time invariant

Let time delay = t

then

Xk[n]=δ[n-k] -> time delay -> system

equals to X(k+t)[n]=δ[n-(k+t)]->system

equals to X(k+t)[n]=δ[n-k-t]->system

equals to Y(k+t)[n]=$ (k+t+1)^2 $ δ[n-(k+t+1)]

while

Xk[n]=δ[n-k] -> system -> time delay

equals to Yk[n]=$ (k+1)^2 $ δ[n-(k+1)]->time delay

equals to Y(k+t)[n]=$ (k+t+1)^2 $ δ[n-(k+t+1)]

yields the same result

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman