(New page: The system is not time invariant Let time delay = t then Xk[n]=δ[n-k] -> time delay -> system =X(k+t)[n]=δ[n-(k+t)]->system =X(k+t)[n]=δ[n-k-t]->system =Y(k+t)[n]=...)
 
Line 7: Line 7:
 
Xk[n]=δ[n-k] -> time delay -> system
 
Xk[n]=δ[n-k] -> time delay -> system
  
=X(k+t)[n]=δ[n-(k+t)]->system
+
equals to X(k+t)[n]=δ[n-(k+t)]->system
  
=X(k+t)[n]=δ[n-k-t]->system
+
equals to X(k+t)[n]=δ[n-k-t]->system
  
=Y(k+t)[n]=<math>(k+t+1)^2</math> &delta;[n-(k+t+1)]
+
equals to Y(k+t)[n]=<math>(k+t+1)^2</math> &delta;[n-(k+t+1)]

Revision as of 15:35, 10 September 2008

The system is not time invariant

Let time delay = t

then

Xk[n]=δ[n-k] -> time delay -> system

equals to X(k+t)[n]=δ[n-(k+t)]->system

equals to X(k+t)[n]=δ[n-k-t]->system

equals to Y(k+t)[n]=$ (k+t+1)^2 $ δ[n-(k+t+1)]

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach