(New page: == Part E == <font size ="4">Input_______________________________Output <math>X_{0}[n] = \delta[n]</math>__________________________<math>Y_{0}[n] = \delta[n-1]</math> <math>X_{1}[n] = ...)
 
(Part E)
Line 21: Line 21:
  
 
<font size ="4"><math>X_{k}[n] = \delta[n-k]</math>_______________________<math>Y_{k}[n] = (k+1)^2\delta[n-(k+1)]</math></font>
 
<font size ="4"><math>X_{k}[n] = \delta[n-k]</math>_______________________<math>Y_{k}[n] = (k+1)^2\delta[n-(k+1)]</math></font>
 +
 +
== First Part ==
 +
 +
The system is time-invariant because any kind of response to the shifted input <math>X_{k}[n] = \delta[n-N-k]</math> is of the shifted output <math>Y_{k}[n] = (k+1)^2\delta[n-N-(k+1)]</math>.
 +
 +
== Second Part ==

Revision as of 13:28, 10 September 2008

Part E

Input_______________________________Output

$ X_{0}[n] = \delta[n] $__________________________$ Y_{0}[n] = \delta[n-1] $

$ X_{1}[n] = \delta[n-1] $_______________________$ Y_{1}[n] = 4\delta[n-2] $

$ X_{2}[n] = \delta[n-2] $_______________________$ Y_{2}[n] = 9\delta[n-3] $

$ X_{3}[n] = \delta[n-3] $_______________________$ Y_{3}[n] = 16\delta[n-4] $

.

.

.

.

$ X_{k}[n] = \delta[n-k] $_______________________$ Y_{k}[n] = (k+1)^2\delta[n-(k+1)] $

First Part

The system is time-invariant because any kind of response to the shifted input $ X_{k}[n] = \delta[n-N-k] $ is of the shifted output $ Y_{k}[n] = (k+1)^2\delta[n-N-(k+1)] $.

Second Part

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett