(Part(a))
(Part(a))
 
Line 15: Line 15:
  
 
<math> P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} </math>
 
<math> P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} </math>
 +
 +
 +
Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Latest revision as of 16:09, 9 September 2008

Part(a)

     Show that P(B) > P(C) > P(T) > P(A):

- P(H) = p , 0 < p < 1

$ P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} $


Recall geometric series:


$ \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x} $ for |x| < 1


$ P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} $


Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch