(Part A: Periodic Signals Revisited)
(Non-Periodic Discrete Time Signal)
Line 10: Line 10:
 
Using the CT signal <math> x(t) = cos(t) </math> and converting it to the DT signal <math> x[n] = cos[n] </math> will create a non-periodic function when n is sampled at every integer.
 
Using the CT signal <math> x(t) = cos(t) </math> and converting it to the DT signal <math> x[n] = cos[n] </math> will create a non-periodic function when n is sampled at every integer.
  
 
+
[[Image:Untitled3_ECE301Fall2008mboutin.jpg]]
 
+
  
 
=== Periodic Discrete Time Signal ===
 
=== Periodic Discrete Time Signal ===

Revision as of 09:55, 10 September 2008

Part A: Periodic Signals Revisited

Periodic Continuous Time Signal

I used the continuous time signal $ x(t) = cos(t) $, as it seemed many people used in Homework 1 for their example of a periodic function. The signal repeats itself at intervals of $ 2\pi $.

HW2 CTfunction ECE301Fall2008mboutin.jpg

Non-Periodic Discrete Time Signal

Using the CT signal $ x(t) = cos(t) $ and converting it to the DT signal $ x[n] = cos[n] $ will create a non-periodic function when n is sampled at every integer.

Untitled3 ECE301Fall2008mboutin.jpg

Periodic Discrete Time Signal

In order to create a discrete time signal $ x[n] = cos[n] $ that was still periodic, the time interval couldn't be integers, as shown previously. Therefore, a time interval of $ \pi/2 $ was selected.

Untitled2 ECE301Fall2008mboutin.jpg

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal