(Linear System Example)
(Linear System Example)
Line 58: Line 58:
 
<math>y[k\mathbf{a}] =\begin{bmatrix} 6 &6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \,</math>
 
<math>y[k\mathbf{a}] =\begin{bmatrix} 6 &6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \,</math>
  
                    =\begin{bmatrix} 24 &36 \end{bmatrix}
+
            <math>        =\begin{bmatrix} 24 &36 \end{bmatrix} </math>

Revision as of 05:49, 11 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t_0)=x(t) + x(t_0)\, $

and

$ x(kt)=kx(t)\, $

Linear System Example

Consider the system $ y[n]=x[n]\cdot\mathbf{M} $


let

$ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


$ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $


$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $

$ k=3\, $


If the system is linear these properties hold:


$ y[\mathbf{a}+\mathbf{b}]=y[\mathbf{a}]+y[\mathbf{b}] \, $


$ y[k\mathbf{a}]=ky[\mathbf{a}] \, $


Here is the proof that the first prop holds:

$ y[a] = \begin{bmatrix}8 & 12 \end{bmatrix} $


$ y[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} $


$ y[a]+y[b]= \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix} $


And the second:

$ ky[\mathbf{a}] =\begin{bmatrix} 24 &36 \end{bmatrix} \, $

$ y[k\mathbf{a}] =\begin{bmatrix} 6 &6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \, $

           $          =\begin{bmatrix} 24 &36 \end{bmatrix}  $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009