(→Linear System Example) |
(→Linear System Example) |
||
Line 13: | Line 13: | ||
Consider the system | Consider the system | ||
− | <math> \mathbf{y}[n]=\mathbf{x}[ | + | <math> \mathbf{y}[n]=\mathbf{x}[n]\cdot\mathbf{M} </math> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | let | ||
+ | |||
+ | <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math> | ||
+ | |||
+ | |||
+ | <math> \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} </math> | ||
+ | |||
+ | |||
+ | <math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math> | ||
− | + | <math> k_1=1</math> | |
+ | <math> k_2=2</math> | ||
Revision as of 05:36, 11 September 2008
Linear System Definition
A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:
$ x(t+t0)=x(t) + x(t0) $
and
$ x(k*t)=k*x(t) $
Linear System Example
Consider the system $ \mathbf{y}[n]=\mathbf{x}[n]\cdot\mathbf{M} $
let
$ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $
$ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $
$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $
$ k_1=1 $ $ k_2=2 $
If the system is linear these properties hold:
$ y[a+b]=y[a]+y[b] \, $
$ y[kb]=ky[b] \, $
Here is the proof that the first prop holds.
$ \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} $
$ \mathbf{y}[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} $
$ y[a]+y[b]= \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix} $