(Linear System Example)
(Linear System Example)
Line 15: Line 15:
 
<math> \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} </math>  
 
<math> \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} </math>  
 
where  
 
where  
<math> \mathbf{y}[b] = \begin{bmatrix}7 & 12 \end{bmatrix} </math>,
+
<math> \mathbf{y}[b] = \begin{bmatrix}16 & 6 \end{bmatrix} </math>,
 
<math> \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>, and
 
<math> \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>, and
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
Line 27: Line 27:
  
  
<math>y[a+b]=f[a]+f[b] \,</math>
+
<math>y[a+b]=y[a]+y[b] \,</math>
  
  
  
 
<math>y[kb]=ky[b] \,</math>
 
<math>y[kb]=ky[b] \,</math>
 +
 +
by performing the math
 +
 +
<math> \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} </math> 
 +
 +
 +
<math> \mathbf{y}[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} </math> 
 +
 +
 +
<math>y[a]+y[b]=  \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix}</math>

Revision as of 09:28, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} $ where $ \mathbf{y}[b] = \begin{bmatrix}16 & 6 \end{bmatrix} $, $ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $, and $ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $


let $ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


If the system is linear these properties hold:


$ y[a+b]=y[a]+y[b] \, $


$ y[kb]=ky[b] \, $

by performing the math

$ \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} $


$ \mathbf{y}[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} $


$ y[a]+y[b]= \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010