(Linear System Example)
(Linear System Example)
Line 22: Line 22:
  
  
let <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>
+
let     <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>
  
  
 
If the system is linear these properties hold:
 
If the system is linear these properties hold:
  
|-
+
 
|<math>y[a+b]=f[a]+f[b] \,</math>
+
<math>y[a+b]=f[a]+f[b] \,</math>
|-
+
 
|<math>f(ax)=af(x) \,</math>
+
<math>y[kb]=ky[b] \,</math>
|
+

Revision as of 09:20, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} $ where $ \mathbf{y}[b] = \begin{bmatrix}7 & 12 \end{bmatrix} $, $ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $, and

$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $


let $ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


If the system is linear these properties hold:


$ y[a+b]=f[a]+f[b] \, $

$ y[kb]=ky[b] \, $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009