(Linear System Example)
(Linear System Example)
Line 19: Line 19:
  
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
 +
 +
let <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>
 +
 +
 +
If the system is linear these properties hold:
 +
 +
|-
 +
|<math>y[a+b]=f[a]+f[b] \,</math>
 +
|-
 +
|<math>f(ax)=af(x) \,</math>
 +
|}

Revision as of 09:18, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} $ where $ \mathbf{y}[b] = \begin{bmatrix}7 & 12 \end{bmatrix} $, $ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $, and

$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $

let $ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


If the system is linear these properties hold:

|- |$ y[a+b]=f[a]+f[b] \, $ |- |$ f(ax)=af(x) \, $ |}

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang