(→Linear System Example) |
(→Linear System Example) |
||
Line 14: | Line 14: | ||
Consider the system | Consider the system | ||
<math> \mathbf{a}\cdot\mathbf{M}=\mathbf{b} </math> | <math> \mathbf{a}\cdot\mathbf{M}=\mathbf{b} </math> | ||
− | where <math>\mathbf{M}=\begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix}</math> is the identity matrix and y(t) and x(t) are n x 1 vectors. | + | where <math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math> is the identity matrix, <math> \mathbf{a} = \begin{bmatrix}4 & 1 \end{bmatrix} </math> |
+ | |||
+ | and y(t) and x(t) are n x 1 vectors. | ||
<math>Insert formula here</math> | <math>Insert formula here</math> |
Revision as of 09:01, 10 September 2008
Linear System Definition
A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:
$ x(t+t0)=x(t) + x(t0) $
and
$ x(k*t)=k*x(t) $
Linear System Example
Consider the system $ \mathbf{a}\cdot\mathbf{M}=\mathbf{b} $ where $ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $ is the identity matrix, $ \mathbf{a} = \begin{bmatrix}4 & 1 \end{bmatrix} $
and y(t) and x(t) are n x 1 vectors. $ Insert formula here $