Line 3: Line 3:
  
 
==Examples of linear system==
 
==Examples of linear system==
X(t)=2t
+
<math>X1(t)=\ 2t</math>
 +
 
 +
<math>X2(t)=\ 2t^2</math>
 +
 
 +
assume the function <math>Y(t)=\ 5X(t)</math>
 +
 
 +
<math>Y1(t)=\ 10t</math>
 +
 
 +
<math>Y2(t)=\ 10t^2</math>
 +
 
 +
now for <math>aY1(t)+bY2(t)=\ a10t+b10t^2=aX1(t)+bX2(t)</math>
 +
 
  
  
 
==Examples of non linear system==
 
==Examples of non linear system==

Revision as of 11:09, 11 September 2008

Linear system

A system is said to be linear if it satisfies the principle of superposition i.e if for an input A the system gives an output X and for an input B the system gives output then for an input ( a*A + b*B ) the system should yield the output as ( a*X + b*B ). Where a and b are any complex numbers.

Examples of linear system

$ X1(t)=\ 2t $

$ X2(t)=\ 2t^2 $

assume the function $ Y(t)=\ 5X(t) $

$ Y1(t)=\ 10t $

$ Y2(t)=\ 10t^2 $

now for $ aY1(t)+bY2(t)=\ a10t+b10t^2=aX1(t)+bX2(t) $


Examples of non linear system

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett