(added problem proposition)
(finished the first part and fixed deltas)
Line 11: Line 11:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X0[n]=d[n]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y0[n]=d[n-1]</td>
+
     <td>X0[n]=&delta;[n]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y0[n]=&delta;[n-1]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X1[n]=d[n-1]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y1[n]=4d[n-2]</td>
+
     <td>X1[n]=&delta;[n-1]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y1[n]=4&delta;[n-2]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X2[n]=d[n-2]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y2[n]=9 d[n-3]</td>
+
     <td>X2[n]=&delta;[n-2]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y2[n]=9 &delta;[n-3]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X3[n]=d[n-3]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y3[n]=16 d[n-4]</td>
+
     <td>X3[n]=&delta;[n-3]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y3[n]=16 &delta;[n-4]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
Line 26: Line 26:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>Xk[n]=d[n-k]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Yk[n]=(k+1)2 d[n-(k+1)]</td>
+
     <td>Xk[n]=&delta;[n-k]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Yk[n]=(k+1)2 &delta;[n-(k+1)]</td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
 
For any non-negative integer k
 
For any non-negative integer k
 +
 +
 +
==Test for Time Invariance==
 +
Start with X2[n]=&delta;[n-2]
 +
 +
Delay the signal by 2 => X2[n] = &delta;[n-4]
 +
 +
Then run the signal through the system:
 +
 +
X2[n] = &delta;[n-4] -> system -> Y2 = 25&delta;[n-5]
 +
 +
 +
Repeat in reverse...
 +
 +
Run the signal through the system:
 +
 +
X2[n]=&delta;[n-2] -> system -> Y2 = 9&delta;[n-3]
 +
 +
Then delay the signal by 2 => Y2 = 9&delta;[n-5]
 +
 +
 +
Since 9&delta;[n-5] &ne; 25&delta;[n-5], the system is not Time Invariant.
 +
 +
 +
 +
==Second Part==
 +
 +
Question:  Assuming that this system is linear, what input X[n] would yield the output Y[n]=u[n-1]?

Revision as of 10:09, 10 September 2008

<< Back to Homework 2

Homework 2 Ben Horst: A  :: B  :: C  :: D  :: E


Given the system

Input      Output
X0[n]=δ[n]  ->   Y0[n]=δ[n-1]
X1[n]=δ[n-1]  ->   Y1[n]=4δ[n-2]
X2[n]=δ[n-2]  ->   Y2[n]=9 δ[n-3]
X3[n]=δ[n-3]  ->   Y3[n]=16 δ[n-4]
...       ...
Xk[n]=δ[n-k]  ->   Yk[n]=(k+1)2 δ[n-(k+1)]

For any non-negative integer k


Test for Time Invariance

Start with X2[n]=δ[n-2]

Delay the signal by 2 => X2[n] = δ[n-4]

Then run the signal through the system:

X2[n] = δ[n-4] -> system -> Y2 = 25δ[n-5]


Repeat in reverse...

Run the signal through the system:

X2[n]=δ[n-2] -> system -> Y2 = 9δ[n-3]

Then delay the signal by 2 => Y2 = 9δ[n-5]


Since 9δ[n-5] ≠ 25δ[n-5], the system is not Time Invariant.


Second Part

Question: Assuming that this system is linear, what input X[n] would yield the output Y[n]=u[n-1]?

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett