(added problem proposition)
Line 4: Line 4:
 
----
 
----
  
part E on its way
+
Given the system
 +
 
 +
<table>
 +
  <tr>
 +
    <td>Input</td><td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>Output</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X0[n]=d[n]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y0[n]=d[n-1]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X1[n]=d[n-1]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y1[n]=4d[n-2]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X2[n]=d[n-2]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y2[n]=9 d[n-3]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>X3[n]=d[n-3]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y3[n]=16 d[n-4]</td>
 +
  </tr>
 +
  <tr>
 +
    <td>...</td><td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>    ...</td>
 +
  </tr>
 +
  <tr>
 +
    <td>Xk[n]=d[n-k]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Yk[n]=(k+1)2 d[n-(k+1)]</td>
 +
  </tr>
 +
</table>
 +
For any non-negative integer k

Revision as of 09:54, 10 September 2008

<< Back to Homework 2

Homework 2 Ben Horst: A  :: B  :: C  :: D  :: E


Given the system

Input      Output
X0[n]=d[n]  ->   Y0[n]=d[n-1]
X1[n]=d[n-1]  ->   Y1[n]=4d[n-2]
X2[n]=d[n-2]  ->   Y2[n]=9 d[n-3]
X3[n]=d[n-3]  ->   Y3[n]=16 d[n-4]
...       ...
Xk[n]=d[n-k]  ->   Yk[n]=(k+1)2 d[n-(k+1)]

For any non-negative integer k

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010