Line 11: Line 11:
  
 
[[Image:hw2a1c_blaskows_ECE301Fall2008mboutin.jpg|frame|center|300px|The non-periodic discrete-time function <math>x[n]=sin(n)</math>.]]
 
[[Image:hw2a1c_blaskows_ECE301Fall2008mboutin.jpg|frame|center|300px|The non-periodic discrete-time function <math>x[n]=sin(n)</math>.]]
 +
 +
 +
==Part 2==
 +
To be completed...

Revision as of 07:17, 9 September 2008

Part 1

One can take a signal that would be periodic in continuous time and turn it into a signal that is not periodic in discrete time. Consider the continuous time signal $ x(t)=sin(t) $. Plotting this signal yields a smooth waveform that repeats itself with period $ T=2\pi $.

The continuous-time signal $ x(t)=sin(t) $ is periodic.

Sampling this signal at every integer time yields something altogether different.

Sampling the continuous-time signal $ x(t)=sin(t) $ at integer times yields something like this. Note that the new discrete-time function $ x[n]=sin(n) $ is not periodic. Here we have shown five cycles of the formerly-periodic continuous time function.

The new discrete time function looks like this on its own.

The non-periodic discrete-time function $ x[n]=sin(n) $.


Part 2

To be completed...

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin