(New page: ==Definition: Time Invariance== A system is time invariant if any input that is first shifted and then put through the system yields the same result as putting the signal through the syste...)
 
Line 5: Line 5:
 
<math>y[n] = e^{x[n]}</math>
 
<math>y[n] = e^{x[n]}</math>
  
Let <math>z[n] = x[n+k]</math>
 
  
<math>y[z[n]]</math>  =?=  <math>y[n+k]</math>
+
Let
  
<math>y[x[n+k]]</math>  =?=  <math>e^{x[n+k]}</math>
+
<math>z[n] = x[n+k]</math>
 +
 
 +
<math>a = n + k</math>
 +
 
 +
 
 +
<math>y[z[n]]</math>  =?=  <math>y[a]</math>
 +
 
 +
<math>y[x[n+k]]</math>  =?=  <math>e^{x[a]}</math>
  
 
<math>e^{x[n+k]} = e^{x[n+k]}</math>
 
<math>e^{x[n+k]} = e^{x[n+k]}</math>

Revision as of 18:39, 8 September 2008

Definition: Time Invariance

A system is time invariant if any input that is first shifted and then put through the system yields the same result as putting the signal through the system first and then shifting the output, provided the magnitude of the shift is the same in both instances.

Example 1: Time-Invariant System

$ y[n] = e^{x[n]} $


Let

$ z[n] = x[n+k] $

$ a = n + k $


$ y[z[n]] $ =?= $ y[a] $

$ y[x[n+k]] $ =?= $ e^{x[a]} $

$ e^{x[n+k]} = e^{x[n+k]} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett