Line 3: | Line 3: | ||
ex: | ex: | ||
− | <math> E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt | + | <math> E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt</math> |
− | + | ||
+ | <math> E_\infty = \int_{0}^{3} [1]^2 </math> | ||
== Power == | == Power == | ||
<math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math> | <math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math> |
Revision as of 09:36, 7 September 2008
Energy
$ E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt $
ex: $ E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt $
$ E_\infty = \int_{0}^{3} [1]^2 $
Power
$ P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt $