(→Periodic Functions) |
|||
Line 3: | Line 3: | ||
>[[HW1.1 Allen Humphreys_ECE301Fall2008mboutin| 1.1]] >[[HW1.2 Allen Humphreys_ECE301Fall2008mboutin| 1.2]] >[[HW1.3 Allen Humphreys_ECE301Fall2008mboutin| 1.3]] >[[HW1.4 Allen Humphreys_ECE301Fall2008mboutin| 1.4]] >[[HW1.5 Allen Humphreys_ECE301Fall2008mboutin| 1.5]] | >[[HW1.1 Allen Humphreys_ECE301Fall2008mboutin| 1.1]] >[[HW1.2 Allen Humphreys_ECE301Fall2008mboutin| 1.2]] >[[HW1.3 Allen Humphreys_ECE301Fall2008mboutin| 1.3]] >[[HW1.4 Allen Humphreys_ECE301Fall2008mboutin| 1.4]] >[[HW1.5 Allen Humphreys_ECE301Fall2008mboutin| 1.5]] | ||
− | + | =Periodic Functions= | |
+ | ==Functions== | ||
+ | === Period Function === | ||
+ | |||
+ | <math>e^{2i*\Pi*}</math> is a periodic function since it has the form <math>e^{N*W_o*\Pi}</math>, where <math>W_o = 1 and N = 2</math> | ||
+ | |||
+ | By definition, <math>e^{N*W_o*\Pi}</math> is a periodic function if <math>\frac{W_o}{2*\Pi}</math> is a rational number. | ||
+ | |||
+ | <math>\frac{W_o}{2*\Pi}</math> using the above numbers, yields a result of <math>\frac{1}{2}</math> which is a rational number. | ||
+ | |||
+ | |||
+ | === Non-Period Function === | ||
+ | |||
+ | <math>e^{200i}</math> is not a periodic function since <math>\frac{W_o}{2*\Pi}</math> yields <math>\frac{100}{\Pi}</math> which is not a rational number. |
Latest revision as of 17:30, 5 September 2008
Homework 1_ECE301Fall2008mboutin
Periodic Functions
Functions
Period Function
$ e^{2i*\Pi*} $ is a periodic function since it has the form $ e^{N*W_o*\Pi} $, where $ W_o = 1 and N = 2 $
By definition, $ e^{N*W_o*\Pi} $ is a periodic function if $ \frac{W_o}{2*\Pi} $ is a rational number.
$ \frac{W_o}{2*\Pi} $ using the above numbers, yields a result of $ \frac{1}{2} $ which is a rational number.
Non-Period Function
$ e^{200i} $ is not a periodic function since $ \frac{W_o}{2*\Pi} $ yields $ \frac{100}{\Pi} $ which is not a rational number.