Line 20: Line 20:
  
  
   <math>P=\frac{1}{(3-2)}\int_{1}^{3}\|x^2|^2\,dx,\,\!</math>
+
   <math>P=\frac{1}{(3-2)}\int_{1}^{3}\ |x^2|^2\,dx,\,\!</math>

Revision as of 17:15, 5 September 2008

Energy and Power

$ x(t)=x^2\! $
and the limits are from 1 to 3.


Energy calculation

 $ E=\int_{1}^{3}\ |x ^2|^2\, dx , \,\! $
 $ E=\int_{1}^{3}\ x ^4\, dx , \,\! $

 $ E=\frac{1}{5}\! $ *$ ((3^5)\! $ - $ (1^5))\! $

 $ E=\frac{1}{5}\! $*$ (243-1)\! $

 $ E=48.4\! $

Power calculation


 $ P=\frac{1}{(3-2)}\int_{1}^{3}\ |x^2|^2\,dx,\,\! $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett