Line 7: Line 7:
 
  E= <math>\int_{1}^{3}\ x ^4\, dx , \,\!</math>
 
  E= <math>\int_{1}^{3}\ x ^4\, dx , \,\!</math>
 
  E= <math>\frac{1}{5}\!</math> {<math>(3^5)\!</math> - <math>(1^5)\!</math>}
 
  E= <math>\frac{1}{5}\!</math> {<math>(3^5)\!</math> - <math>(1^5)\!</math>}
  E= <math>\frac{1}{5}\!</math>*<math>243-1\!</math>
+
  E= <math>\frac{1}{5}\!</math>*<math>(243-1)\!</math>
 
  E= <math>48.4\!</math>
 
  E= <math>48.4\!</math>

Revision as of 16:50, 5 September 2008

Energy and Power

x(t)= $ x^2\! $

Energy calculation

E= $ \int_{1}^{3}\ |x ^2|^2\, dx , \,\! $
E= $ \int_{1}^{3}\ x ^4\, dx , \,\! $
E= $ \frac{1}{5}\! $ {$ (3^5)\! $ - $ (1^5)\! $}
E= $ \frac{1}{5}\! $*$ (243-1)\! $
E= $ 48.4\! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett