(New page: == Energy == <math>E = \int_{t1}^{t2}{|x(t))|^2dt}</math> ==Usint this result let us consider an example,== <math>= \int_{0}^{2 \pi}{|cos(t)|^2dt}</math> <math>=\int_{0}^{2\pi}\frac(1+c...)
 
(Usint this result let us consider an example,)
 
Line 6: Line 6:
 
<math>= \int_{0}^{2 \pi}{|cos(t)|^2dt}</math>
 
<math>= \int_{0}^{2 \pi}{|cos(t)|^2dt}</math>
  
<math>=\int_{0}^{2\pi}\frac(1+cos(2t)}{2}dt</math>
+
<math>= \int_{0}^{2 \pi}\frac{1 + cos(2t)}{2}dt</math>
<math>=\frac{2\pi}{2}+\frac[1}{4}sin(4\pi)</math>
+
 
<math>=\{1\pi}</math>
+
<math>=\frac{2 \pi}{2} + \frac{1}{4} sin(4 \pi)</math>
 +
 
 +
<math>=\frac{2 \pi}{2} </math>
  
 
== Power ==
 
== Power ==

Latest revision as of 13:08, 5 September 2008

Energy

$ E = \int_{t1}^{t2}{|x(t))|^2dt} $

Usint this result let us consider an example,

$ = \int_{0}^{2 \pi}{|cos(t)|^2dt} $

$ = \int_{0}^{2 \pi}\frac{1 + cos(2t)}{2}dt $

$ =\frac{2 \pi}{2} + \frac{1}{4} sin(4 \pi) $

$ =\frac{2 \pi}{2} $

Power

$ P = \frac{1}{2 \pi - 0} \int_{0}^{2 \pi}{|cos(t)|^2dt} $

$ = \frac{1}{2 \pi} \int_{0}^{2 \pi}\frac{[1 + cos(2t)]}{2}dt $


$ =\frac{1}{2} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn