(New page: == Energy and Power == The energy and power of a signal can be found through the use of basic calculus. Energy, E: <math> = \int_{t1}^{t2} y(t) </math> For the signal y(t) from 0 to 10...)
 
(Energy and Power)
 
Line 5: Line 5:
 
Energy, E: <math>  = \int_{t1}^{t2} y(t) </math>
 
Energy, E: <math>  = \int_{t1}^{t2} y(t) </math>
  
For the signal y(t) from 0 to 10 seconds:
+
For the signal y(t) from 0 to 10 seconds, with y = <math>7x^3</math>
 +
 
 
E = <math> \int_{0}^{10} 7x^3 </math>
 
E = <math> \int_{0}^{10} 7x^3 </math>
  
Line 11: Line 12:
  
 
E  <math> = (\frac{7}{3} * 10^4) - (\frac{7}{3} *0)</math>
 
E  <math> = (\frac{7}{3} * 10^4) - (\frac{7}{3} *0)</math>
 +
 +
Power, P: <math>  = \frac{1}{t2-t1}\int_{t1}^{t2} y(t) </math>
 +
 +
P = <math>  \frac{1}{10-0}\int_{0}^{10} y(t) </math>
 +
 +
P = <math> \frac {1}{10} * \frac{7}{3} * 10^4 </math>

Latest revision as of 11:42, 5 September 2008

Energy and Power

The energy and power of a signal can be found through the use of basic calculus.

Energy, E: $ = \int_{t1}^{t2} y(t) $

For the signal y(t) from 0 to 10 seconds, with y = $ 7x^3 $

E = $ \int_{0}^{10} 7x^3 $

E = $ = \frac{7}{3}[x^{4}]_{t=0}^{t=10} \! $

E $ = (\frac{7}{3} * 10^4) - (\frac{7}{3} *0) $

Power, P: $ = \frac{1}{t2-t1}\int_{t1}^{t2} y(t) $

P = $ \frac{1}{10-0}\int_{0}^{10} y(t) $

P = $ \frac {1}{10} * \frac{7}{3} * 10^4 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett