(In Multiple Events)
(In Two Events)
Line 2: Line 2:
  
 
==In Two Events==
 
==In Two Events==
 +
Two events A and B are independent if the following formula holds:
  
 
<math>P(A \bigcap B) = P(A) \times P(B) </math>
 
<math>P(A \bigcap B) = P(A) \times P(B) </math>

Revision as of 10:59, 8 September 2008

Independence

In Two Events

Two events A and B are independent if the following formula holds:

$ P(A \bigcap B) = P(A) \times P(B) $

For example, given a coin, are the two outcomes independent?

$ P( \lbrace C_1=H \rbrace \bigcap \lbrace C_2 =H \rbrace ) = 1/4 $

$ P( C_1=H ) \times P(C_2=H) = 1/2 \times 1/2 = 1/4 $

Since the product of the two probabilities is equal to overall probability, the events are independent.

[1]

In Multiple Events

$ \bigcap_{i \in S} A_i = \prod_{i \in S} P(A_i) $

Conditional Probability

A & B are conditionally independent given C if the following formula holds true.

$ P(A \bigcap B|C) = P(A|C) \times P(B|C) $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010