Line 6: | Line 6: | ||
== Signal Power == | == Signal Power == | ||
For CT functions, the power of a signal from <math>t_1\!</math> to <math>t_2\!</math> is given by the function <math>P_{avg}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2\ dt \!</math> | For CT functions, the power of a signal from <math>t_1\!</math> to <math>t_2\!</math> is given by the function <math>P_{avg}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2\ dt \!</math> | ||
+ | |||
+ | The total signal power is given by the function <math>P_{\inf}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2\ dt \!</math> | ||
<math>\sum^{N}_{n=-N}</math> | <math>\sum^{N}_{n=-N}</math> |
Revision as of 04:02, 5 September 2008
Signal Energy
Signal Energy expended from $ t_1\! $ to $ t_2\! $ for CT functions is given by the formula $ E = \int_{t_1}^{t_2} \! |x(t)|^2\ dt $
The total signal energy for a signal can be found by taking the limits for the integral $ t_1\! $ and $ t_2\! $ as $ -inf\! $ and $ inf\! $ respectively
Signal Power
For CT functions, the power of a signal from $ t_1\! $ to $ t_2\! $ is given by the function $ P_{avg}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2\ dt \! $
The total signal power is given by the function $ P_{\inf}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2\ dt \! $
$ \sum^{N}_{n=-N} $