Line 1: Line 1:
 +
Your Rhea entry may discuss anything pertaining to the problem:  an idea for an approach, a question, a comment on a supplemental relevant topic, etc.
 +
 +
For an example on using LaTeX, I have restated the problem below (for more help, see [http://www.mediawiki.org/wiki/Manual:Math the Rhea LaTeX Manual])
 
* (a) Prove that <math>1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x}</math> for <math>x\neq1</math> and integer <math>n\geq1</math>.
 
* (a) Prove that <math>1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x}</math> for <math>x\neq1</math> and integer <math>n\geq1</math>.
  
 
* (b) What is <math>1 + 2x + 3x^2 + \ldots +nx^{n-1}</math>? (Hint:  differentiate (a))
 
* (b) What is <math>1 + 2x + 3x^2 + \ldots +nx^{n-1}</math>? (Hint:  differentiate (a))

Revision as of 17:28, 3 September 2008

Your Rhea entry may discuss anything pertaining to the problem: an idea for an approach, a question, a comment on a supplemental relevant topic, etc.

For an example on using LaTeX, I have restated the problem below (for more help, see the Rhea LaTeX Manual)

  • (a) Prove that $ 1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x} $ for $ x\neq1 $ and integer $ n\geq1 $.
  • (b) What is $ 1 + 2x + 3x^2 + \ldots +nx^{n-1} $? (Hint: differentiate (a))

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood