(Problems)
(Problems)
Line 26: Line 26:
  
 
       <math>x(t) = 3\cos(4t + \frac{\pi}{3})</math>
 
       <math>x(t) = 3\cos(4t + \frac{\pi}{3})</math>
 +
 +
  
 
* Not Periodic Continuous-Time Signal
 
* Not Periodic Continuous-Time Signal
  
       <math>x(t) = e^{j(\pit-1)}</math>
+
 
     
+
 
      It is not continuous because
+
* Bonus Question
 +
 
 +
       <math>x(t) = e^{j(\pi-1)}</math>

Revision as of 19:42, 4 September 2008

Periodic Signal Definition

  • For a Continuous-time signal
     There exists a positive value of T for which
     
     $ x(t) = x(t - T) $
     
     for all values of t.
  • For a Discrete-time signal
     There exists a positive integer N for which
     
     $ x[n] = x[n + N] $
     
     for all values of n.
     
     Note: N is the period of the signal.


Problems

  • Periodic Continuous-Time Signal
     $ x(t) = 3\cos(4t + \frac{\pi}{3}) $


  • Not Periodic Continuous-Time Signal


  • Bonus Question
     $ x(t) = e^{j(\pi-1)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett