Line 2: Line 2:
  
 
Feynman's Technique of integration utilizes parametrization and a mix of other different mathematical properties in order to integrate an integral that is can't be integrated through normal processes like u-substitution or integration by parts. It primarily focuses on setting a function equal to an integral, and then differentiating the function to get an integral that is easier to work with. A simple example would be the integral:
 
Feynman's Technique of integration utilizes parametrization and a mix of other different mathematical properties in order to integrate an integral that is can't be integrated through normal processes like u-substitution or integration by parts. It primarily focuses on setting a function equal to an integral, and then differentiating the function to get an integral that is easier to work with. A simple example would be the integral:
<center><math> \int_{0}^{\infty}(e^(-x^2)*cos(2x)) dx</math></center>
+
<center><math> \int_{0}^{\infty}(e^((-x)^2)*cos(2x)) dx</math></center>
 
[[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]]
 
[[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]]

Revision as of 17:09, 27 November 2020

What is Feynman's Technique?

Feynman's Technique of integration utilizes parametrization and a mix of other different mathematical properties in order to integrate an integral that is can't be integrated through normal processes like u-substitution or integration by parts. It primarily focuses on setting a function equal to an integral, and then differentiating the function to get an integral that is easier to work with. A simple example would be the integral:

$ \int_{0}^{\infty}(e^((-x)^2)*cos(2x)) dx $

Back to Feynman Integrals

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett