Line 3: Line 3:
 
Over the past years in math, I've seen many different methods for reparametrizing variables as a way to make a complex integral easier to deal with. Essentially we just take a function of some value and differentiate it with respect to a different variable, creating newer, simpler functions. One application of this includes u-substitution, where we let an arbitrary variable (in this case "u") represent a portion of our integral. For example, let's take this integral:
 
Over the past years in math, I've seen many different methods for reparametrizing variables as a way to make a complex integral easier to deal with. Essentially we just take a function of some value and differentiate it with respect to a different variable, creating newer, simpler functions. One application of this includes u-substitution, where we let an arbitrary variable (in this case "u") represent a portion of our integral. For example, let's take this integral:
 
<center><math> \int {(sin{(x)})*(cos{(x)})} dx</math></center>
 
<center><math> \int {(sin{(x)})*(cos{(x)})} dx</math></center>
To solve this, we would simply let our new variable "u" equal <math>sin{(x)}</math> and differentiate both sides, resulting in an equation with <math> du = cos{(x)} dx </math>. We can then proceed to use this as a substitution for dx, changing our integral to <math> \int {sin{(u)} du}</math>
+
To solve this, we would simply let our new variable "u" equal <math>sin{(x)}</math> and differentiate both sides, resulting in an equation with <math> du = cos{(x)} dx </math>. We can then proceed to use this as a substitution for dx, changing our integral to <math> \int {sin{(u)} du}</math>, which is much easier to compute.
  
, and we even see parametrization appear in surface integrals.  
+
While u-substitution is the clearest example of parametrization, we even see it appear in surface integrals. This concept is extremely useful, especially with complex integrals, and it plays a major role in an integration technique known as Feynman's technique.
 
+
Feynman's Technique to integration utilizes parametrization and a combination with other different mathematical properties in order to integrate an integral that is can't be integrated through normal processes like u-substitution or integration by parts. It primarily focuses on setting a function equal to an integral, and then differentiating the function to get an integral that is easier to work with. A simple example would be:
+
(1/2)*xe^(x^2) instead of just e^(x^2).
+
  
 
[[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]]
 
[[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]]

Revision as of 16:35, 27 November 2020

A Review on Reparametrizing

Over the past years in math, I've seen many different methods for reparametrizing variables as a way to make a complex integral easier to deal with. Essentially we just take a function of some value and differentiate it with respect to a different variable, creating newer, simpler functions. One application of this includes u-substitution, where we let an arbitrary variable (in this case "u") represent a portion of our integral. For example, let's take this integral:

$ \int {(sin{(x)})*(cos{(x)})} dx $

To solve this, we would simply let our new variable "u" equal $ sin{(x)} $ and differentiate both sides, resulting in an equation with $ du = cos{(x)} dx $. We can then proceed to use this as a substitution for dx, changing our integral to $ \int {sin{(u)} du} $, which is much easier to compute.

While u-substitution is the clearest example of parametrization, we even see it appear in surface integrals. This concept is extremely useful, especially with complex integrals, and it plays a major role in an integration technique known as Feynman's technique.

Back to Feynman Integrals

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn