(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:image processing <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qu...") |
|||
Line 19: | Line 19: | ||
</center> | </center> | ||
==Problem 1== | ==Problem 1== | ||
− | a) <math>\frac{C(s)}{R(s)} = \frac{4}{s(s+1)} | + | a) <math>\frac{C(s)}{R(s)} = \frac{4}{s(s+1)}</math> |
+ | |||
+ | b) <math>\frac{B(s)}{E(s)} = \frac{2}{s+1}+\frac{4}{s(s+1)} = \frac{2s+4}{s(s+1)}</math> | ||
+ | |||
+ | c) <math>\frac{C(s)}{R(s)} = \frac{\frac{4}{s(s+1)}}{1+\frac{2s+4}{s(s+1)}}</math> | ||
+ | |||
+ | d) <math> 1+\frac{2s+4}{s(s+1)} = 0 </math> | ||
+ | |||
+ | e) <math> s(s+1)+2s+4 = 0 \Rightarrow s^2+3s+4=0 </math> | ||
+ | <math> \therefore \omega_n^2 =4, \; 2\zeta \omega_n = 3 \Rightarrow \tau = \frac{1}{\zeta \omega_n} = \frac{3}{2}</math> |
Revision as of 21:43, 1 August 2019
Automatic Control (AC)
Question 1: Feedback Control Systems
August 2017 (Published in Jul 2019)
Problem 1
a) $ \frac{C(s)}{R(s)} = \frac{4}{s(s+1)} $
b) $ \frac{B(s)}{E(s)} = \frac{2}{s+1}+\frac{4}{s(s+1)} = \frac{2s+4}{s(s+1)} $
c) $ \frac{C(s)}{R(s)} = \frac{\frac{4}{s(s+1)}}{1+\frac{2s+4}{s(s+1)}} $
d) $ 1+\frac{2s+4}{s(s+1)} = 0 $
e) $ s(s+1)+2s+4 = 0 \Rightarrow s^2+3s+4=0 $
$ \therefore \omega_n^2 =4, \; 2\zeta \omega_n = 3 \Rightarrow \tau = \frac{1}{\zeta \omega_n} = \frac{3}{2} $