m |
|||
Line 34: | Line 34: | ||
</center> | </center> | ||
− | # Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\ | + | # Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\lambda_b^d</math>. |
+ | |||
+ | <center> | ||
+ | <math> | ||
+ | \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} | ||
+ | \hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} | ||
+ | </math> | ||
+ | </center> |
Revision as of 23:32, 6 July 2019
Communication, Networking, Signal and Image Processing (CS)
Question 5: Image Processing
August 2016 (Published on Jul 2019)
Problem 1
- Calculate an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current.
$ \lambda_n^c=\lambda_n^b-\lambda_n^d $
- Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence.
$ G_n=-\mu(x,y_0+n*\Delta d)\lambda_n $
- Calculate an expression for $ \hat{P}_n $, an estimate of the integral intensity in terms of $ \lambda_n $, $ \lambda_n^b $, and $ \lambda_b^d $.
$ \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} \hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} $