Line 104: Line 104:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
  x(t)&  = \frac{e^{j12\pi n} - e^{-j12\pi n} }{2j} \\
+
  x[n]&  = \frac{e^{j12\pi n} - e^{-j12\pi n} }{2j} \\
 
& = \frac{1}{2j} e^{j12\pi n} - \frac{1}{2j} e^{-j12\pi n} \text{(*)}
 
& = \frac{1}{2j} e^{j12\pi n} - \frac{1}{2j} e^{-j12\pi n} \text{(*)}
 
\end{align}
 
\end{align}
Line 112: Line 112:
 
By Fourier Series we know that
 
By Fourier Series we know that
 
<math>
 
<math>
  x(t) = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} =  \int_{k=-\infty}^\infty a_k e^{jk 12 \pi  n} \text{(**)}
+
  x[n] = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} =  \int_{k=-\infty}^\infty a_k e^{jk 12 \pi  n} \text{(**)}
 
</math>
 
</math>
  
Line 127: Line 127:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
x(t) &  = 1 + \frac{1}{2j}(e^{j\frac{2}{8}\pi n} - e^{-j\frac{2}{8}\pi n}) + \frac{3}{2} (e^{j\frac{2}{8}\pi n} + e^{-j\frac{2}{8}\pi n}) \\
+
x[n] &  = 1 + \frac{1}{2j}(e^{j\frac{2}{8}\pi n} - e^{-j\frac{2}{8}\pi n}) + \frac{3}{2} (e^{j\frac{2}{8}\pi n} + e^{-j\frac{2}{8}\pi n}) \\
 
& = 1e^{j\pi n} +  \frac{1}{2j}e^{j \frac{2}{8}\pi n} +  \frac{1}{2j}e^{-j \frac{2}{8}\pi n} +  \frac{3}{2}e^{j \frac{2}{8}\pi n} -  \frac{3}{2}e^{j \frac{2}{8}\pi n} \text{(*)}
 
& = 1e^{j\pi n} +  \frac{1}{2j}e^{j \frac{2}{8}\pi n} +  \frac{1}{2j}e^{-j \frac{2}{8}\pi n} +  \frac{3}{2}e^{j \frac{2}{8}\pi n} -  \frac{3}{2}e^{j \frac{2}{8}\pi n} \text{(*)}
 
\end{align}
 
\end{align}
Line 134: Line 134:
 
By Fourier Series we know that
 
By Fourier Series we know that
 
<math>
 
<math>
  x(t) = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} =  \int_{k=-\infty}^\infty a_k e^{jk \frac{2}{8} \pi  n} \text{(**)}
+
  x[n] = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} =  \int_{k=-\infty}^\infty a_k e^{jk \frac{2}{8} \pi  n} \text{(**)}
 
</math>
 
</math>
  
Line 144: Line 144:
 
----
 
----
  
& = \frac{e^{j6\pi t} - e^{-j6\pi t} }{2j} \\
+
<math>
& = \frac{1}{2j} e^{j6\pi t} - \frac{1}{2j} e^{-j6\pi t} \\
+
& \text{By Fourier Series we know that} \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} \\
+
& \text{Here, } \omega_o = 6 \pi \text{ ,therefore, } \\
+
& = \frac{1}{2j} e^{j\omega_o(1) t} - \frac{1}{2j} e^{j\omega_o(-1) t} \\
+
& \text{So we can say that } a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j},  a_k = 0 \text{ for all other k} \\
+
 
\text{3) } x[n] = -j^n, \omega_o = \frac{\pi}{2} \\
 
\text{3) } x[n] = -j^n, \omega_o = \frac{\pi}{2} \\
 +
</math>
 +
 +
<math>
 +
\begin{align}
 +
x[n]&  = \frac{e^{j12\pi n} - e^{-j12\pi n} }{2j} \\
 +
& = \frac{1}{2j} e^{j12\pi n} - \frac{1}{2j} e^{-j12\pi n} \text{(*)}
 +
\end{align}
 +
</math>
 +
 +
 +
By Fourier Series we know that
 +
<math>
 +
x[n] = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} =  \int_{k=-\infty}^\infty a_k e^{jk 12 \pi  n} \text{(**)}
 +
</math>
 +
 +
By comparing (*) with (**), we can see that
 +
<math>
 +
a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j},  \text{and } a_k = 0 \text{ for all other k}.
 +
</math>
 +
 +
----
 +
<math>
 
\text{4) } x[n] =
 
\text{4) } x[n] =
 
  \begin{cases}
 
  \begin{cases}
Line 156: Line 173:
 
   0, & \text{otherwise}
 
   0, & \text{otherwise}
 
  \end{cases}\\
 
  \end{cases}\\
 
 
\end{align}
 
 
</math>
 
</math>
 
----
 
----
----
 
==[[2019_Spring_ECE_301_Boutin_21 Savage in MATLAB_Jeff Rodrigues_comments | Questions and comments]]==
 
If you have any questions, comments, etc. please post them [[2019_Spring_ECE_301_Boutin_21 Savage in MATLAB_Jeff Rodrigues_comments|here]].
 
 
----
 
----
 
[[https://www.projectrhea.org/rhea/index.php/2019_Spring_ECE_301_Boutin|Back to 2019 Spring ECE 301 Boutin]]
 
[[https://www.projectrhea.org/rhea/index.php/2019_Spring_ECE_301_Boutin|Back to 2019 Spring ECE 301 Boutin]]
 
----
 
----

Revision as of 17:33, 30 April 2019


Fourier Series Coefficients

A project by Kalyan Mada



Introduction

I am going to compute some fourier series coefficients.


CT signals


$ \text{1) } x(t) = sin(6 \pi t), \text{ the frequency of this signal is } \omega_{o} = 6\pi. $

$ \begin{align} x(t)& = \frac{e^{j6\pi t} - e^{-j6\pi t} }{2j} \\ & = \frac{1}{2j} e^{j6\pi t} - \frac{1}{2j} e^{-j6\pi t} \text{(*)} \end{align} $


By Fourier Series we know that $ x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} = \sum_{k=-\infty}^\infty a_k e^{jk 6 \pi t} \text{(**)} $

By comparing (*) with (**), we can see that $ a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, \text{and } a_k = 0 \text{ for all other k}. $



$ \text{2) } x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi. $

$ \begin{align} x(t) & = 2 + \frac{1}{2}(e^{j6\pi t} + e^{-j6\pi t}) + \frac{1}{4j} (e^{j3\pi t} -e^{-j3\pi t}) \\ & = 2e^{j\pi t} + \frac{1}{2}e^{j 6\pi t} + \frac{1}{2}e^{-j 6\pi t} + \frac{1}{4j}e^{j 3\pi t} - \frac{1}{4j}e^{j 3\pi t} \text{(*)} \end{align} $

By Fourier Series we know that $ x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} = \sum_{k=-\infty}^\infty a_k e^{jk 3 \pi t} \text{(**)} $

By comparing (*) with (**), we can see that $ a_0 = 2, a_1 = \frac{1}{4j}, a_{-1} = -\frac{1}{4j}, a_2 = a_{-2} = \frac{1}{2}, and a_k = 0 \text{ for all other k} \\ $


$ \text{3) } x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\ $

$ \begin{align} x(t) & = \frac{e^{j\frac{2\pi}{10} t} + e^{-j\frac{2\pi}{10} t} }{2} \\ & = \frac{1}{2}e^{j\frac{2\pi}{10} t} + \frac{1}{2}e^{-j\frac{2\pi}{10} t} \text{(*)} \end{align} $

By Fourier Series we know that $ x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} = \sum_{k=-\infty}^\infty a_k e^{jk 6 \pi t} \text{(**)} $

By comparing (*) with (**), we can see that $ a_2 = a_{-2} = \frac{1}{2}, and a_k = 0 \text{ for all other k}\\ $


$ \text{4) } x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} $


DT signals


$ \text{1) } x[n] = sin(12 \pi n), \omega_o = 12 \pi $

$ \begin{align} x[n]& = \frac{e^{j12\pi n} - e^{-j12\pi n} }{2j} \\ & = \frac{1}{2j} e^{j12\pi n} - \frac{1}{2j} e^{-j12\pi n} \text{(*)} \end{align} $


By Fourier Series we know that $ x[n] = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} = \int_{k=-\infty}^\infty a_k e^{jk 12 \pi n} \text{(**)} $

By comparing (*) with (**), we can see that $ a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, \text{and } a_k = 0 \text{ for all other k}. $


$ \text{2) } x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\ $

$ \begin{align} x[n] & = 1 + \frac{1}{2j}(e^{j\frac{2}{8}\pi n} - e^{-j\frac{2}{8}\pi n}) + \frac{3}{2} (e^{j\frac{2}{8}\pi n} + e^{-j\frac{2}{8}\pi n}) \\ & = 1e^{j\pi n} + \frac{1}{2j}e^{j \frac{2}{8}\pi n} + \frac{1}{2j}e^{-j \frac{2}{8}\pi n} + \frac{3}{2}e^{j \frac{2}{8}\pi n} - \frac{3}{2}e^{j \frac{2}{8}\pi n} \text{(*)} \end{align} $

By Fourier Series we know that $ x[n] = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} = \int_{k=-\infty}^\infty a_k e^{jk \frac{2}{8} \pi n} \text{(**)} $

By comparing (*) with (**), we can see that $ a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, \text{and } a_k = 0 \text{ for all other k}. $


$ \text{3) } x[n] = -j^n, \omega_o = \frac{\pi}{2} \\ $

$ \begin{align} x[n]& = \frac{e^{j12\pi n} - e^{-j12\pi n} }{2j} \\ & = \frac{1}{2j} e^{j12\pi n} - \frac{1}{2j} e^{-j12\pi n} \text{(*)} \end{align} $


By Fourier Series we know that $ x[n] = \int_{k=-\infty}^\infty a_k e^{jk\omega_o n} = \int_{k=-\infty}^\infty a_k e^{jk 12 \pi n} \text{(**)} $

By comparing (*) with (**), we can see that $ a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, \text{and } a_k = 0 \text{ for all other k}. $


$ \text{4) } x[n] = \begin{cases} sin(\pi t), & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases}\\ $



[to 2019 Spring ECE 301 Boutin]


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett