(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...")
 
Line 25: Line 25:
 
b)<br>
 
b)<br>
 
<math>y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T}))</math><br>
 
<math>y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T}))</math><br>
 +
<br>
 +
 +
c)<br>
 +
minimum sampling frequency <math>\dfrac{1}{T}>=\dfrac{2}{a}</math>  <math>f>=\dfrac{2}{a}</math>  <math>T<=\dfrac{a}{2}</math><br>
 +
<br>
 +
 +
d)<br>
 +
<math>T=\dfrac{a}{2}</math><br>
 +
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS5-3.PNG<br>
 +
<br>
 +
 +
e)<br>
 +
<math>T=a</math><br>
 +
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS5-4.PNG<br>
 
<br>
 
<br>
 
----
 
----

Revision as of 14:24, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 2


Solution

a)
$ sinc^2(\dfrac{t}{a}) \Rightarrow |a|\Lambda(af) $ (CTFT)
Wan82_CS5-2.PNG

b)
$ y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T})) $

c)
minimum sampling frequency $ \dfrac{1}{T}>=\dfrac{2}{a} $ $ f>=\dfrac{2}{a} $ $ T<=\dfrac{a}{2} $

d)
$ T=\dfrac{a}{2} $
Wan82_CS5-3.PNG

e)
$ T=a $
Wan82_CS5-4.PNG


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett