(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...")
 
Line 35: Line 35:
 
<br>
 
<br>
  
 +
e)<br>
 +
This is a sharpen filter. The image will become more sharpen as <math>\lambda</math> increases.
 
----
 
----
 
[[QE_2017_CS-5|Back to QE CS question 5, August 2017]]
 
[[QE_2017_CS-5|Back to QE CS question 5, August 2017]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 14:07, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 1


Solution

a)
$ ay(m,n)=ax(m,n)+a\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l)) $ linear

b)
$ y(m,n)=x(m,n)+\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l))=1.5x(m,n)-\dfrac{1}{18}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l) $
$ h(m,n)=1.5\delta(m,n)-\dfrac{1}{18}(\delta(m+1)+\delta(m)+delta(m-1)(\delta(n-1)+\delta(n)+\delta(n+1))) $
Wan82_CS5-1.PNG

c)
Not a separable system.

d)
$ H(e^{j\mu},e^{jv})=\dfrac{3}{2}-\dfrac{1}{18}\sum_{m=-1}^{1} e^{-j\mu}\sum_{n=-1}^{1} e^(-jv) =\dfrac{3}{2}-\dfrac{1}{18}(1+2cos\mu)(1+2cosv) $

e)
This is a sharpen filter. The image will become more sharpen as $ \lambda $ increases.


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal