Line 20: Line 20:
 
The problem equal to<br>
 
The problem equal to<br>
 
Minimize <math>(x_1)^2+(x_2)^2-14x_1-6x_2-7</math><br>
 
Minimize <math>(x_1)^2+(x_2)^2-14x_1-6x_2-7</math><br>
Subject to <math>x_1+x_2-2<=0 x_1+2x_2-3<=0</math><br>
+
Subject to <math>x_1+x_2-2<=0</math> and <math>x_1+2x_2-3<=0</math><br>
 
Form the lagrangian function<br>
 
Form the lagrangian function<br>
 
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>
 
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>

Revision as of 21:41, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ x_1+x_2-2<=0 $ and $ x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \begin{cases} \nabla_xl(x,\mu)=begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} \\ \mu_1(x_1+x_2-2)=0 \\ \mu_2(x_1+2x_2-3)=0 \\ \mu_1>=0, \mu_2>=0 \end{cases} $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010