(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Auto...")
 
Line 23: Line 23:
 
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>  
 
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>  
 
----
 
----
[[QE2016_AC-3_ECE580|Back to QE AC question 2, August 2015]]
+
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 12:24, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 2


Solution

a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3
For fixed step gradient descent algorithms $ \alpha $ should in the range $ (0,\dfrac{2}{\lambda max(Q)}) $
b) $ f(x)-\dfrac{1}{2}x^TQx-b^Tx=\dfrac{1}{2}x^T\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix}-5 $
such that $ \lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6}) $


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva