(ECE538_CS2_2010_question1)
Line 1: Line 1:
[[Category:ECE PhD Qualifying Exams]][[Category:ECE PhD Qualifying Exams]][[Category:ECE PhD Qualifying Exams]]
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
=QE2010_CS-2_ECE538=
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
 +
<font size= 4>
 +
Automatic Control (AC)
  
 +
Question 3: Optimization
 +
</font size>
  
Put your content here . . .
+
August 2017
 +
</center>
 +
----
 +
----
 +
<!--哈哈我是注释,:Student answers and discussions for [[QE2013_AC-3_ECE580-1|Part 1]],[[QE2013_AC-3_ECE580-2|2]],[[QE2013_AC-3_ECE580-3|3]],[[QE2013_AC-3_ECE580-4|4]],[[QE2013_AC-3_ECE580-5|5]]不会在浏览器中显示。-->
  
 +
----
 +
Problem 1. [50 pts] <br>
 +
Equation 1 below is the formula for reconstructing the DTFT, <math> X(\omega) </math>, from <math>N</math> equi-spaced samples of the DTFT over <math> 0 \leq \omega \leq 2\pi </math>. <math> X_{N}(k) = X(\frac{2\pi k}{N},k=0,1,...,N-1) </math> is the N-pt DFT of x[n], which corresponds to N equi-spaced samples of the DTFT of x[n] over <math>0 \leq \omega \leq 2\pi</math>.
 +
<center><math> X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{sin[\frac{N}{2}(\omega - \frac{2 \pi k}{N})]}{N sin[\frac{1}{2} (\omega -\frac{2 \pi k}{N})]} e^{-j\frac{N-1}{2}(\omega - \frac{2 \pi k}{N}) } </math></center>,(1)<br/>
 +
(a) Let x[n] be a discrete-time rectangular pulse of length <math>L=12</math> as defined below: <br/>
 +
<center><math> x[n] = {-1,-1,-1,-1,1,1,1,1,1,1,1,1} </math></center> <br/>
 +
(i) <math> X_{N}(k) </math> is computed as a 16-point DFT of x[n] and used in Eqn (1) with N=16. Write a close-form expression for resulting reconstructed spectrum <math> X_{r}(\omega) </math>. <br/>
 +
(ii)
 +
----
 +
----
  
  
 
+
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]
[[ ECE PhD Qualifying Exams|Back to ECE PhD Qualifying Exams]]
+

Revision as of 23:16, 27 January 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2017




Problem 1. [50 pts]
Equation 1 below is the formula for reconstructing the DTFT, $ X(\omega) $, from $ N $ equi-spaced samples of the DTFT over $ 0 \leq \omega \leq 2\pi $. $ X_{N}(k) = X(\frac{2\pi k}{N},k=0,1,...,N-1) $ is the N-pt DFT of x[n], which corresponds to N equi-spaced samples of the DTFT of x[n] over $ 0 \leq \omega \leq 2\pi $.

$ X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{sin[\frac{N}{2}(\omega - \frac{2 \pi k}{N})]}{N sin[\frac{1}{2} (\omega -\frac{2 \pi k}{N})]} e^{-j\frac{N-1}{2}(\omega - \frac{2 \pi k}{N}) } $
,(1)

(a) Let x[n] be a discrete-time rectangular pulse of length $ L=12 $ as defined below:

$ x[n] = {-1,-1,-1,-1,1,1,1,1,1,1,1,1} $

(i) $ X_{N}(k) $ is computed as a 16-point DFT of x[n] and used in Eqn (1) with N=16. Write a close-form expression for resulting reconstructed spectrum $ X_{r}(\omega) $.
(ii)




Back to ECE QE page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn