Line 7: Line 7:
 
&= \cos(y) + i\sin(y)
 
&= \cos(y) + i\sin(y)
 
   \end{align}
 
   \end{align}
</math>
+
</math> (7)
  
  
Line 16: Line 16:
 
&= e^{x}(\cos(y) + i\sin(y))
 
&= e^{x}(\cos(y) + i\sin(y))
 
   \end{align}
 
   \end{align}
</math>
+
</math> (7)

Revision as of 22:47, 2 December 2018

Euler's Equation And De Moivre's Formula

Euler's Equation is put simply as the following:

$ \begin{align} e^{iy} &= \cos(y) + i\sin(y) \end{align} $ (7)


In a more general case, it can more important to see if $ z = z + iy $, then $ e^{z} $ is defined to be the complex number

$ \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $ (7)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn