Line 1: | Line 1: | ||
===Euler's Equation And De Moivre's Formula=== | ===Euler's Equation And De Moivre's Formula=== | ||
+ | |||
+ | If <math>z = z + iy<math>, then <math>e^{z}<math> is defined to be the complex number | ||
<math> | <math> | ||
\begin{align} e^{z} | \begin{align} e^{z} | ||
− | &= e^{x}(\ | + | &= e^{x}(\cos(y) + i\sin(y)) |
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 22:24, 2 December 2018
Euler's Equation And De Moivre's Formula
If $ z = z + iy<math>, then <math>e^{z}<math> is defined to be the complex number <math> \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $